123ArticleOnline Logo
Welcome to 123ArticleOnline.com!
ALL >> Computer-Programming >> View Article

Difference Between Ai & Ml

Profile Picture
By Author: Mansi Pathak
Total Articles: 11
Comment this article
Facebook ShareTwitter ShareGoogle+ ShareTwitter Share

Do you understand the difference between Artificial Intelligence and Machine learning? Interested to learn? Great, sit down or stand up and take a moment to read this short blog and we will provide our explanation of the difference between Artificial Intelligence and Machine learning. And, while we on the journey, we will take a moment to explain the TonkaBI approach to Ai?

Artificial Intelligence is two words which have two separate meanings, artificial meaning made by people, often as a copy of something natural or something that was created unintentionally. Intelligence meaning the ability to learn understands and makes judgments or have opinions that are based on reason. Sometimes, Artificial Intelligence in the computer programming world is misunderstood as a system or an application but this is not true, Ai is the study of how to train computers to perform tasks that share characteristics of human intelligence. Ai code can be embedded into applications, systems or devices this does not mean they’re Ai it means they’re augmented by AI.

Machine Learning, lets again look at the words separately. Machine - a piece of equipment to perform do a particular type of work. Learning - the activity of obtaining knowledge by studying it or by experience. ML in computer programming is when the machine can learn on its own without being explicitly programmed. Machine learning algorithms are used in sorting high volumes of data. Machine learning also supports Ai development by reducing the amount of hard rule based code, without ML you would have to write hundreds maybe thousands of lines of code within the Ai algorithm.

A computer (program) can gain the ability of Ai with little training and with a small amount of data, but this Ai will lack precision and intelligence in analyzing contrasting data e.g. computer vision. The Ai could identify a car door from selected images but not a car door from various angles or what side the car door is, and, it would not be able to identify a car door from random never seen before image data. Ai can further lack ‘intelligence’ through the wrong or weak algorithm and engineering ingenuity. A true Ai algorithm should perform its deigned task with high accuracy and scalability and outperform human counterpart at that given task, example AI image processing and classification in analyzing vehicle damage – faster, more accurate, multiple cases, and 24 hours per day – better than a human can manage.

TonkaBI uses two examples for the types of Ai we develop and use. These explanations and definitions may not be academically correct, but these are the terms we use in-house and when explaining Ai and the type of Ai we use when communicating to our partners and clients.
Narrow Ai – For TonkaBI this means the Ai is a decentralized standalone series of code that is embedded into client customer systems and processes. Narrow Ai does not have the ability to learn from data or its mistakes or its correct choices. It just performs a set task, day in day out to an acceptable standard. The Ai does not need internet access to work; neither does it require API’s. This Ai provides many businesses with the ability to have Ai technology in remote situation, embedded on hardware or environments where access to the internet is unachievable. The Ai also provides many businesses with a “Good Enough” approach to many situations. TonkaBI can update its Narrow Ai, which maybe embedded into client system, through “swapping” new code for the old. The new code would have been further trained with better ‘understanding’ ‘accuracy’ ‘features’ etc. This Ai grows in ‘steps’ as required for clients.

Active Ai – Similar to Narrow Ai but with a big difference, the Active Ai has a parent (a teaching model) that corrects mistakes and supports change and growth. This means the Active Ai can learn from data and gain knowledge that would be otherwise be forgotten or lost on the fly, in real time. So, the more data the Ai consumes the better it gets. Active Ai needs access through the internet or a network to the TonkaBI parent teaching module.
TonkaBI fully supports both Ai models and agrees there are advantages and disadvantages to both approaches. Our way of working and providing modern solutions to businesses has come from understanding our client’s what to have the code embedded in their own systems, ones they control and manage, our businesses model comes from listening to the market.


Know more about it at : https://www.tonkabi.com/machine-learning

More About the Author

I am Curious, creative, Thinker, Love to breath, writer by day reader by Night

Total Views: 85Word Count: 746See All articles From Author

Add Comment

Computer Programming Articles

1. How To Fix Error 5505 On Amazon Fire Tv Stick?
Author: jaxson harry

2. How To Fix Error Code 0xc004f074 On Windows 8 & 10
Author: jaxson harry

3. Information About Mobile Apps Scraping
Author: Nikita Patil

4. Best Python Programming Language Online Course In 2019
Author: Zacky Naeem

5. All The Useless Windows 10 Features Microsoft Should Remove
Author: Rosella

6. Why Data Science Is One Of The Highest Paying Careers In 2019?
Author: DataScienceAI

7. The Chrome Web Store Primer Part 3: Pave The Way To Retention Using Analytics
Author: SHANTANU

8. The Chrome Web Store Primer Part 2: Optimizing Conversion Rate Using Analytics
Author: SHANTANU

9. The Chrome Web Store Primer Part 1: Before Publishing
Author: SHANTANU

10. The Easiest Way To Turn Your Browser Extension Idea Into Reality
Author: rupa

11. Dell Data Storage, Blade Server, Tower Server,rack Server Dealer In Chennai
Author: Dev System

12. Reasons Why Software Testing Is Required
Author: Ram Uppalapati

13. Benefits Of Mean Stack For Web Application Development
Author: Amit tiwari

14. Know About: How Helpful The Hospital Management Software Is…...
Author: pavitra poojary

15. Why All Hospitals/clinic Needs Laboratory Management System
Author: manu shetty

Login To Account
Login Email:
Password:
Forgot Password?
New User?
Sign Up Newsletter
Email Address: