123ArticleOnline Logo
Welcome to 123ArticleOnline.com!

ALL >> Computer-Programming >> View Article

The Java Programming Language

By Author: Infocampus
Total Articles: 163

Java - an island of Indonesia, a type of coffee, and a programming language. Three very different meanings, each in varying degrees of importance. Most programmers, though, are interested in the Java programming language. In just a few short years (since late 1995), Java has taken the software community by storm. Its phenomenal success has made Java the fastest growing programming language ever. There's plenty of hype about Java, and what it can do. Many programmers, and end-users, are confused about exactly what it is, and what Java offers.
Java is a revolutionary language
The properties that make Java so attractive are present in other programming languages. Many languages are ideally suited for certain types of applications, even more so than Java. But Java brings all these properties together, in one language. This is a revolutionary jump forward for the software industry.
Let's look at some of the properties in more detail: -
• object-oriented
• portable
• multi-threaded
• automatic garbage collection
• secure
• network and "Internet" aware
• simplicity and ease-of-use
Many older languages, like C and Pascal, were procedural languages. Procedures (also called functions) were blocks of code that were part of a module or application. Procedures passed parameters (primitive data types like integers, characters, strings, and floating point numbers). Code was treated separately to data. You had to pass around data structures, and procedures could easily modify their contents. This was a source of problems, as parts of a program could have unforeseen effects in other parts. Tracking down which procedure was at fault wasted a great deal of time and effort, particularly with large programs.
In some procedural language, you could even obtain the memory location of a data structure. Armed with this location, you could read and write to the data at a later time, or accidentally overwrite the contents.
Java is an object-oriented language. An object-oriented language deals with objects. Objects contain both data (member variables) and code (methods). Each object belongs to a particular class, which is a blueprint describing the member variables and methods an object offers. In Java, almost every variable is an object of some type or another - even strings. Object-oriented programming requires a different way of thinking, but is a better way to design software than procedural programming.
Most programming languages are designed for a specific operating system and processor architecture. When source code (the instructions that make up a program) are compiled, it is converted to machine code which can be executed only on one type of machine. This process produces native code, which is extremely fast.
Another type of language is one that is interpreted. Interpreted code is read by a software application (the interpreter), which performs the specified actions. Interpreted code often doesn't need to be compiled - it is translated as it is run. For this reason, interpreted code is quite slow, but often portable across different operating systems and processor architectures.

If you've ever written complex applications in C, or PERL, you'll probably have come across the concept of multiple processes before. An application can split itself into separate copies, which run concurrently. Each copy replicates code and data, resulting in increased memory consumption. Getting the copies to talk together can be complex, and frustrating. Creating each process involves a call to the operating system, which consumes extra CPU time as well.
Automatic garbage collection
No, we're not talking about taking out the trash (though a computer that could literally do that would be kind of neat). The term garbage collection refers to the reclamation of unused memory space. When applications create objects, the JVM allocates memory space for their storage. When the object is no longer needed (no reference to the object exists), the memory space can be reclaimed for later use.
Security is a big issue with Java. Since Java applets are downloaded remotely, and executed in a browser, security is of great concern. We wouldn't want applets reading our personal documents, deleting files, or causing mischief. At the API level, there are strong security restrictions on file and network access for applets, as well as support for digital signatures to verify the integrity of downloaded code.
Network and "Internet" aware
Java was designed to be "Internet" aware, and to support network programming. The Java API provides extensive network support, from sockets and IP addresses, to URLs and HTTP. It's extremely easy to write network applications in Java, and the code is completely portable between platforms. In languages like C/C++, the networking code must be re-written for different operating systems, and is usually more complex. The networking support of Java saves a lot of time, and effort.
Java also includes support for more exotic network programming, such as remote-method invocation (RMI), CORBA and Jini. These distributed systems technologies make Java an attractive choice for large distributed systems.
Simplicity and ease-of-use
Java draws its roots from the C++ language. C++ is widely used, and very popular. Yet it is regarded as a complex language, with features like multiple-inheritance, templates and pointers that are counter-productive. Java, on the other hand, is closer to a "pure" object-oriented language.
Java provides developers with many advantages. While most of these are present in other languages, Java combines all of these together into one language. The rapid growth of Java has been nothing short of phenomenal, and shows no signs (yet!) of slowing down. In next month's column, I'll talk more about the heart of Java - the Java Virtual Machine.

Total Views: 22Word Count: 887See All articles From Author

Computer Programming Articles

1. Using Selenium To Achieve Automation Exploratory Testing
Author: Siyaram Ray

2. Difference Between Automation Testing And Manual Testing
Author: Siyaram Ray

3. User Retention With Mobile App On-boarding
Author: Manoj Mirchandani

4. Did Human Testers Get Replace By Test Automation- Selenium
Author: Siyaram Ray

5. Tips And Benefits Of Automation Testing - Selenium
Author: Siyaram Ray

6. Automation Testing - Top Testing Trends
Author: Siyaram Ray

7. Tips For Choosing A Right Android App Development Company
Author: Manoj Mirchandani

8. Extraordinary Highlights And Career Growth In Selenium
Author: Siyaram Ray

9. Selenium Tutorial: Functions And Features Of Selenium
Author: Siyaram Ray

10. What Is C#?
Author: Karan Singh

11. Learn How To Reset Or Change Your True Key Master Password Of Mcafee
Author: James Watson

12. Introduction Of Selenium Test Automation For Web Applications
Author: Siyaram Ray

13. Purposes Of Enthusiasm Of Java Multithreading
Author: Infocampus

14. Online Education
Author: meerab ali

15. Scriptless Test Automation In Selenium - Benefits
Author: Siyaram Ray

Login To Account
Login Email:
Forgot Password?
New User?
Sign Up Newsletter
Email Address: